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Abstract

The relationship between a landscape process and observed patterns can be rigorously tested only if the ex-
pected pattern in the absence of the process is known. We used methods derived from percolation theory to
construct neutral landscape models, i.e., models lacking effects due to topography, contagion, disturbance
history, and related ecological processes. This paper analyzes the patterns generated by these models, and
compares the results with observed landscape patterns. The analysis shows that number, size, and shape of
patches changes as a function of p, the fraction of the landscape occupied by the habitat type of interest,
and m, the linear dimension of the map. The adaptation of percolation theory to finite scales provides a base- .
line for statistical comparison with landscape data. When USGS land use data (LUDA) maps are compared
to random maps produced by percolation models, significant differences in the number, size distribution,
and the area/perimeter (fractal dimension) indices of patches were found. These results make it possible to
define the appropriate scales at which disturbance and landscape processes interact to affect landscape
patterns.

Introduction
\

Vegetation patterns are the result of complex inter-
actions between climate, terrain, soil, water avail-
ability, biota (Whittaker 1975) and alterations
resulting from wind and fire (Pickett  and White
1985). Alterations in landscapes as a result of ur-
banization, agriculture, and forestry management
have significant effects on the pattern of vegetation
as established systems are removed and replaced
with managed ones (e.g., Burgess and Sharpe 1981;
Turner 1987a). The prediction of future landscape
patterns requires an understanding of how process-
es vary in space, how they are influenced by disturb-
ances, and how these processes will affect the land-
scape pattern (Forman  and Godron 1986).

Fractal geometry (Mandelbrot 1983; Burrough

1983) has been used to characterize the shape and
size of land cover types and relate these statistics to
natural and human processes (Krummel et al. 1987;
Milne in press a). These and other .methods  have
generated hypotheses about the appropriate spatial
scales for the study of ecological systems (e.g.,
Meentemeyer and Box in press). However, the use-
fulness of these methods and hypotheses as quan-
titative tools depends on our ability to statistically
test results against a standard. One means of defin-
ing this standard is to develop an appropriate neu- ’
tral model (Caswell 1976) that produces an expect-
ed pattern in the absence of specific landscape
processes. Such patterns establish a base against
which data and hypotheses can be rigorously tested
to establish significant departures from the expect-
ed patterns. These differences can then be used to
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infer relationships between landscape processes and
observed results.

Percolation theory as a neutral landscape model

Percolation theory was developed to describe physi-
cal properties of gels, polymers, and glassy materi-
als and forms the basis for studies of the flow of li-
quids through material aggregates (Gefen et al.
1983; Orbach  1986). The first studies in percolation
theory took place during the early 1940’s,  but the
computer intensive nature of the geometrical and
probabilistic concepts restricted the usefulness of
percolation theory until large and fast computers
became available. The analytical and computation-
al methods developed from percolation theory
(Stauffer 1985) provide a means of generating and
analyzing patterns of two-dimensional arrays. Per-
colation arrays are similar to two-dimensional iand-
scape  maps and are appropriately ‘neutral’ to the
physical and biological processes which shape land-
scape patterns because they are formed by simple
random processes.

A two-dimensional percolating network within
an array of size m by m is formed by randomly
choosing the occupation of the m*  sites with a prob-
ability of p. For large arrays pm* sites are occupied
while (l-p)m2  sites are empty. The number, size
and shape of clusters of occupied sites changes as a
function of p. A ‘cluster’ is formed by a group of
occupied  sites which have at least one common edge
along the vertical and horizontal directions of a
square lattice but not along the diagonals. Cluster
characteristics have been found to change most
rapidly near the critical probability, pc (p, =
0.5928 for a random square lattice, other values for
differently shaped lattices or alternative network
models, see Stauffer 1985). For very large lattices,
the value of pc is the probability at which the lar-
gest cluster will cross the grid continuously from
one side to the other. This grid-spanning cluster is
referred to as an infinite cluster because, for p >
pc,  the cluster will span the infinite plane (Orbach
1986). On large grids (m*  >.  106),  the shape of the
largest cluster, as measured by the fractal dimen-
sion, has also been shown to be affected by p

(Stauffer 1985) with clusters having a fractal
dimension < 2 when p < p,,  but a dimension ap-
proaching 2 when p > pc.

The simple nature and properties of percolation
arrays make them useful for landscape studies.
However, unlike most landscape analyses, percola-
tion studies have relied on large arrays (e.g., m =
109;  Stauffer 1985) which exhibit negligeable
boundary effects. This study attempts to adapt
some of the results of percolation theory to the
finite scales of landscape maps and to use these
results as a neutral model for analysis of landscape
data.

Methods

Two-dimensional maps with m of 50, 100, 200 and
400 were randomly generated for different values
of p. The number of replications (N) for each map
size was set so that the total number of sites (N * m*)
evaluated for each value of p was at least 100,000.
The total number and size distribution of clusters,
the size and fractal dimension of the largest cluster,
and the number of edges of all clusters were calcu-

lated and statistically summarized for all replicate
combinations of m and p.

The fractal dimension is of interest because it is
known that the shape of clusters changes as a func-
tion of p (Stauffer 1985). If clusters of finite maps
can be shown to have consistent geometric charac-
teristics over a range of map sizes (i.e., self-similar)
then the fractal dimension might allow us to trans-
late results from one map scale to another (Milne in
press b).

The method used to estimate the fractal dimen-
sion presents a number of practical considerations
when applied to finite maps. Mandelbrot (1983) has
shown that for two-dimensional objects the rela-
tionship between perimeter and area is described
by: ’

-

S = kPd, (1)

where S = the area of the object, P is the perimeter,
d is the fractal dimension, and k is a constant. The
fractal dimension, d, in eq (1) will have the value of
2.0 for plane filling objects such as circles and
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Tab/e 1. Number of cluster@  on a random map as a function of map size and probability of occurrence

Map
sizer’,  c

0 . 1 0.2

Probability of a site on the map being occupied (p)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

50 (N = 40)
mean 204 310, 326 276 1 8 0 7 9 2 5 6 . 1 1 . 4

sd 13.1 9.9 1 2 . 3 14.1 1 6 . 0 1 2 . 4 5 . 5 2.3 0.6
cv% 6.4 3.2 3.8 5 . 1 8.8 16 2 2 3 7 4 3

100 (N = 10)

mean 8 1 3 1 2 2 4 1 2 9 9 1 0 9 6 6 9 1 279 8 7 19 2.3
sd 31.6 22.9 25.2 36.2 3 3 . 5 24.3 8.6 6 . 1 1 . 3
cv% 3.9 1 . 9 1 . 9 3 . 3 4.9 8.7 9.9 31 5 8

200 (N = 4)

mean 3 2 1 1 4903 5181 4300 2653 1021 3 1 8 6 5 4.8
sd 35.2 60.0 13.4 58.9 59.4 4 2 1 4 . 8 1 0 . 6 2 . 5
cv% 1.1 1 . 2 1 . 4 1 . 4 2.2 4 . 1 4.7 16 5 3

400 (N = 2)

mean 1 2 8 5 5 1 9 4 5 5 20480 1 7 0 0 3 1 0 5 2 5 4 1 4 1 1 2 2 4 237 1 8 . 0
range 3 187 15 7 239 5 2 3 6 17 4

a Clusters are formed by occupied sites which are adjacent along the vertical and horizontal directions of a square grid, but not along
the diagonals.

b Map size is the linear dimension, m, of a square map in arbitrary units. The square of the linear dimension, m*,  gives the total number
of possible sites on the map.

c Mean, standard deviation and coefficient of variation (standard deviation/mean x 100) are given for 40, 10, and 4 replications (N)
for map sizes 50, 100 and 200, respectively. The mean and range of two replications (N = 2) are reported for maps of linear dimension
4 0 0 .

squares, and a value of 1.0 for a straight line.
Landscape studies usually involve maps with

linear dimension (m) of less than 100 units. This
results in maps with a limited number of clusters, a
fractal dimension which may be seriously affected
by the edges of the map, and the need to precisely
estimate P and k of eq (1). Some practical choices
for estimating P and k are: (1) the radius, r, of the
cluster (P = r, k = 1); (2) the average diameter of
the cluster (P = r and k = 2); and (3) or the total
perimeter of the cluster (P = the perimeter and
k = 0.25). Substituting these different values into
eq (l), the fractal dimension for a solid cluster of
lo9 sites (expected d = 2.0) would be: (1) 2.056; (2)
1.988; and (3) 2.000. For reasonable ecological map
lengths of m = 100 the estimates are: (1) 2.283; (2)
1.949; (3) 2.000. Thus, eq (1) is relatively insensitive
to the choice of k and P when m is very large, but
the smaller map size results in unacceptable errors
for methods (1) and (2). Because method (3) is intui-
tively appealing for two dimensional objects and
gives reliable estimates for small clusters, it will be

used in this paper to estimate d, the fractal dimen-
sion.

The USGS digital land use and land cover data
base (Fegas et al. 1983) provides landscape maps in-
terpreted from NASA U2/R8-57 high-altitude aeri-
al photo coverage obtained in 1973. The original
aerial photographs were hand digitized into 37 land
cover categories. Because the original USGS data
set divides 1:250,000  quadrangles into 24 sections,
a special computer program was written to remove
section boundaries and convert the polygon data to
grid format. This allowed an analysis of the entire
quadrangle as one landscape with linear dimensions
of 650 by 950 sites (each site or pixel has an area of
4.0 ha).

We selected three quadrangles with different
fractions of forest cover: Florence, NC (p = 0.4);
Montgomery, AL (p = 0.6); and Bluefield, WV
(p = 0.8). Ten maps of size 100 by 100 were ran-
domly sampled from each LUDA quadrangle. The
number, size and fractal dimension of forest
patches were determined for each sample, the
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Table 2. The size (S) of the largest clustera  on a random map as a function of map size and probability of occurrence

Map
sizeb*  c

0 . 1 0 . 2

Probability of a pixel on the map being occupied (p)

0 . 3 0.4 0.5 0.6 0.7 0.8 0.9

50 (N = 40)
mean
s d
cv%

100 (N = 10)
mean
sd
cvvo

200 (N = 4)
mean
sd
cvvo

400 (N = 2)
mean
range

4.7 1 0 . 3 1 9 . 9 42.9 1 2 7 843 1691 1990 2247
0.9 2.6 5.7 1 4 . 2 44.8 289 39.4 22.4 14.3
18 2 5 2 9 3 3 3 5 3 4 2.3 1.1 0.6

5.6 1 2 . 4 24.2 59.8 239.4 3477 6826 7 9 7 1 8990
0.7 1 . 6 2.9 15 8 7 1063 5 4 3 9 21
13 13 12 2 6 3 6 3 0 0.8 0.5 0.2

6.8 1 4 . 0
0.5 1 . 4
7.4 10

8.0 1 8 . 0
0 0

27.8 7 6
5.0 26.9
18 3 5

3 9 8 7 . 5
2 3 7

3 2 3 1 7 8 4 4 27475 31939 35999
76.1 1 9 5 3 1 3 2 1 7 4 123
2 4 1 1 0.5 0.5 0.3

501 64663 1 0 9 9 2 3 1 2 7 8 1 1 1 4 3 9 9 5
2 1 3 616 207 29 8 6

a Clusters are formed by occupied sites which are adjacent along the vertical and horizontal directions of a square grid, but not along
the diagonals.

b Map size is the linear dimension, m, of a square map in arbitrary units. The square of the linear dimension, m’,  gives the total number
of possible sites on the map.

c Mean, standard deviation and coefficient of variation (standard deviation/mean x 100) are given for 40, 10, and 4 replications (N)
for map sizes 50, 100 and 200, respectively. The mean and range of two replications (N = 2) are reported for maps of linear dimension
4 0 0 .

results statistically summarized and compared with
appropriate random maps.

Results

The number of clusters on a random map of size m
varies as a function of p (Table 1). Although the
proportion of the map that is occupied by a land
cover type .increases  directly with p, the maximum
number of clusters is found at p = 0.3. Below
p = 0.3. the clusters are small and widely spaced.
Above p = 0.3 the addition of new sites aggregates
scattered clusters into fewer but larger patches
(Table 2). The number of clusters per map declines
above p = 0.3, decreasing more rapidly above the
critical probability, pC. The relative variability
(cv%  = coefficient of variation = [standard devia-
tion/mean] * 100) of cluster number per map is also
affected by p, increasing as the total number of
clusters declines.

Table 1 indicates that if p is known, the number

of clusters can be predicted with less than 5% error
below p,,  but with an error greater than 10%
above p,.  The reason for the increase in error
above p, is that the edges of the map truncates the
larger clusters, producing a systematic bias. This ef-
fect diminishes with increasing map size. For in-
stance, at p = 0.7 the extrapolation from m = 50
to m = 100 results in a 15% overestimation; from
m = 100 to m = 200 a 9% overestimation; and
from m = 200 to m = 400 a 4% overestimation of
expected cluster number per map.

The size, S, of the largest cluster on the map
varies with m and p (Table 2). S increases rapidly
above p, with cv%,  showing a peak near p,.  For
p > pc the effect of map size, m, on estimates of S
is proportional to m’.  For instance, at p = 0.7 the
value of S predicted from maps with m = 50 to
maps with m = 100 has a prediction error less then
1%. However, the relationship between S and mZ
does not hold when p < p,. Above pC the largest
cluster spans the map and will continue to do so as
the map size increases (Orbach  1986). Below p,  the
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Tab/e 3. Fractal dimension of largest clustera  as a function of map size and probability of occurrence

Map
sizebj  c

0 . 1 0.2

Probability of a pixel on the map being occupied (p)

0.3 0.4 0 . 5 0.6 0.7 0.8 0.9

50 (N = 40)
mean
sd
cv%

100 (N = 10)
mean
sd
cv%

200 (N = 4)
mean
s d
cv%

1.5 1 . 4 2 1 . 3 6 1 . 3 4 1 . 3 6 1 . 4 6 1 . 6 6 1 . 7 8 1 . 8 8
0.08 0 . 1 1 0.07 0.06 0.06 0.05 0.03 0.03 0.02
5 . 1 7 . 5 5.2 4.2 4 . 1 3 . 5 1 . 9 1 . 4 1 . 0

1.5 1 . 4 1 . 3 7 1 . 3 2 1.33 1.51 1 . 6 9 1.81 1.91
0.09 0 . 1 0.04 0.05 0.02 0.03 0 . 0 1 0.02 0 . 0 1
5.9 6.9 3.2 4 . 1 1.5 2 . 1 0.5 0.8 0.7

1.41 1 . 3 7 1.31 1 . 3 0 1 . 3 2 1 . 5 7 1 . 7 3 1.83 1.91
0 . 0 1 0.07 0 . 0 1 0.06 0.03 0.02 0 . 0 1 0.004 0.003
0.9 5.1 1.1 4.6 2.5 1 . 4 0.8 0.2 0.2

400 (N = 2)
mean 1 . 3 8 1 . 3 0 1 . 3 3 1.33 1 . 3 6 1 . 5 9 1 . 7 6 1 . 8 5 1 . 9 2
range 0 0.03 0.09 0 . 0 1 0.02 0.004 0.002 < 0.001 < 0.001

a Clusters are formed by occupied sites which are adjacent along the vertical and horizontal directions of a square grid, but not along
the diagonals.

b Map size is the linear dimension, m, of a square map in arbitrary units. The square of the linear dimension, m2,  gives the total number
of possible sites on the map.

C  Mean, standard deviation and coefficient of variation (standard deviation/mean x 100) are given for 40, 10, and 4 replications (N)
for map sizes 50, 100 and 200, respectively. The mean and range of two replications (N = 2) are reported for maps of linear dimension
4 0 0 .

size of the largest cluster increases as a function of
m (Stauffer 1985). Thus, estimates ‘of S for maps
with p < p, is a sampling problem - a large map
examines a larger sample area and is more likely to
include larger clusters.

estimates of d are quite stable with less than an 8%
range in uncertainty associated with any given com-
bination of m and-p.

The estimates of the fractal dimension of the
largest cluster as a function of m and p are shown
in Table 3. When p is small (0.1 to 0.3) the clusters
are small (4 to 30, Table 2) and the fractal dimen-
sion is overestimated (biased) by the rectangular na-
ture of the individual sites composing the cluster.
As the clusters become larger the fractal dimension
approaches 1.32 to 0.4 < p < 0.5. Above p, the
value of d increases and approaches 2.0 as p ap-
proaches 1 .O.

The total number of edges for all clusters shows
a peak value at p = 0.5 (Table 4). Figure 1 illus-
trates the change in inner and total edges as a func-
tion of p on a map with m = 100. Although the
total number of edges changes slowly with p, inner
edges decline rapidly as p is reduced below pc.  The
reason is that cluster size is a function of p (Table
2),  and as cluster size declines the gaps within a
patch are opened and become a part of the external
edge of the cluster. When p declines below 0.4 there
are very few clusters with any inner edges. ’

A comparison of the cumulative frequency dis-
The linear dimension of the map, m, has a small tribution (cfd) of cluster size for random maps was

but noticeable effect on estimates of d. The larger made with the cfd of actual landscape data from the
edge/area ratio of small maps causes a higher esti- LUDA maps (Fig. 2). Several differences between
mated fractal dimension when p < p,.  This effect actual landscapes and simple random maps are evi-
is not evident above pc because the largest cluster dent. The number of forest patches sampled from
will always be truncated by the map edge no matter the LUDA landscape data (352, 181, and 52 for
how large the map becomes. Despite this effect, the values of p of 0.4, 0.6 and 0.8, respectively) differ



24

Table 4. The mean edge of all clustersa  as a function of map size and probability of occurrence

Map
sizeb,  c

0 . 1

Probability of a pixel on the map being occupied (p)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50 (N = 40)

mean
sd
cv%

100 (N = 10)

mean
sd
cv%

200 (N = 4)

mean
s d
cv%

400 (N = 2)

mean
range

9 1 1 1620 2114 2428 2550 2470 2202 1 7 3 4 1 0 6 9
55.2 43.0 4 1 . 1 44.2 37.7 37.8 44.6 54.7 46.6
6 . 1 2.7 1 . 9 1 . 8 1 . 5 1 . 5 2.0 3.2 4.3

3640 6450 8 4 4 1 9702 1 0 1 1 6 9 7 5 3 8618 6658 3956
1 3 0 7 8 . 1 53.6 93.5 69.5 68.5 84.2 1 0 6 74
3.6 1 . 2 0.6 1 . 0 0.7 0.7 0.9 1 . 6 1 . 9

1 4 4 8 3 25808 33822 3 8 6 4 1 40269 38554 33879 26076 1 5 0 6 0
2 1 1 2 3 7 2 1 1 219 185 29.2 1 6 8 362 378
1 . 5 0.9 0.6 0.6 0 . 5 0.08 0.5 1 . 4 2 . 5

57810 1 0 2 7 7 5 1 3 4 4 7 6 153834 1 6 0 1 9 3 1 5 3 6 4 8 134969 1 0 3 2 6 3 59065
4 5 626 452 1 3 2 1 1 0 796 526 1 9 8 418

a A cluster edge is defined as the number of sites which are not members of the same cluster. Clusters are formed by occupied sites which
are adjacent along the vertical and horizontal directions of a square grid, but not along the diagonals.

b Map size is the linear dimension, m, of a square map in arbitrary units. The square of the linear dimension, m*,  gives the total number
of possible sites on the map.

c Mean, standard deviation and coefficient of variation (standard deviation/mean x 100) are given for 40, 10, and 4 replications (N)
for map sizes 50, 100 and 200, respectively. The mean and range of two replications (N = 2) are reported for maps of linear dimension
4 0 0 .

considerably from the random maps (1096, 279,
and 19 for values of p 0.4, 0.6, and 0.8, Table 1).
The cumulative frequency distribution (cfd) for
LUDA landscapes always lies below the cfd for the
random maps, indicating a greater tendency for site
aggregation in the actual landscape. Some of these
differences can be attributed to the high proportion
of single isolated sites on random maps (i.e., at S of
loo the cfd > 0.5, Fig. 2a and 2b,  and cfd > 0.8,
Fig. 2~).  However, adjustment of the cfd of ran-
dom maps by removal of these single isolated sites
does not remove the significant differences between
the LUDA landscapes and the random maps.

As the fraction of occupied sites increases above
p,,  the random maps and LUDA landscapes be-
come more similar. Both types of maps show fewer,
larger clusters which tend to fill the entire 100 x
100 map. At p = 0.8 (Fig. 2c) the size of the largest
clusters on random and LUDA maps are nearly the
same. However, the shape of the cfd of Fig. 2c still
shows that even at these high values of p, landscape
processes continue to produce unique landscape at-
tributes.

Discussion

The purpose of a neutral model is to generate the
expected system behavior in the absence of specific
processes which may affect that system (Caswell
1976). We have used percolation theory to develop
neutral landscape models so that data can be objec-
tively compared against random patterns. Because
the difference between landscape data and model
predictions is a measure of adequacy (i.e., goodness
of fit), neutral models can be used to measure the
improvement in predictability which may be
achieved by modeling topographic, climatic, and
disturbance effects.

The neutral models generated from percolation
theory show that estimates of the expected number,
size distribution and fractal dimension of clusters
on a simple random map all vary as a function of
m, the linear dimension of the map, and p, the frac-
tion of available sites that are occupied by the land-
scape type of interest. These results provide impor-
tant guidelines for comparative landscape studies.
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Fig. 1. The number of edges observed on a randomly generated
map (linear dimension = 100) as a function of p, the fraction
of sites occupies on the map. An edge is defined as the number
of surfaces of a cluster that are adjacent to an unoccupied map
site. Outer edges lie along the outside of a cluster while inner
edges are adjacent to another land use type which is completely
enclosed by the cluster. Total edges are sums of all inner and
outer cluster edges.

If different land cover types are compared, differ-
ences in m and p must be understood before
hypothesized effects can be tested. For some situa-
tions, knowing m and p may be sufficient to proper-
ly scale differences between maps. Consideration of
m and p are also necessary for extrapolating the ef-
fect of disturbances measured at small scales to
larger areas. Changes in spatial scale, however,
should not be viewed as linear changes (Meen-
temeyer and Box 1987). For instance, a 10% reduc-
tion in land cover will have little noticeable effect
on the number, size and shape of patches with p less
than p, but will have dramatic effects in areas
where p is greater than p,.

The analysis of simple random maps leads to
several considerations involving the use of broad
scale maps for studying landscape pattern and
changes due to disturbance. (For our purposes a
‘disturbance’ is any process which breaks large

patches into smaller ones (Burgess and Sharpe
1981)). Figure 3 illustrates these ideas by graphing
p, the maximum observable fraction of land use
type, as a function of m, the linear dimension of the
map. No matter how rare the habitat, if m is suf-
ficiently small some maps can be found where
p = 1 .O (the ‘undersized map’, Fig. 3). As the area
of the map is increased, the heterogeneity of the
landscape reveals itself, and the fraction of the map
occupied by that habitat drops below 1 .O. The frac-
tion may remain high as long as the area chosen is
uniform and the map size remains within the natur-
al boundaries established by soils, geology, climate,
etc. (the ‘suitable resolution’ zone, Fig. 3). Further
increases in map size will increase the probability of
encountering the limits of the range for that habitat
type. When this happens the total fraction of the
landscape occupied by that habitat will diminish
(the ‘transition zone’ of Fig. 3). Finally, one arrives
at map sizes at which the habitat of interest is rare
(the ‘oversized map’, Fig. 3; see Allen and Starr
1982 for an example).

Disturbance effects will be most evident at scales
where the disturbance forces the value of p for the
landscape below p, causing the curve to shift to the
left (dashed line, Fig. 3). This change will neces-
sitate using broader scale maps to minimize the
relative coverage of patches newly created by the
disturbance and thus maintain the original relation-
ship of Fig. 3. Support for this hypothesis can be
found in Shugart and West (1981) and Bormann
and Likens (1979) who emphasized that vegetative
changes form a dynamic equilibrium at sufficiently
broad scales where the percent coverage of ‘dis-
turbed’ areas is minimal. If the disturbance oper-
ates at a scale greater than the map then the results
of simple random effects may be sufficient to pre-
dict the consequence of the disturbance. For exam-
ple, if p > pc then a random disturbance will in-
crease habitat edge according to the relationships
shown in Table 4 and Fig. 1, with a predictable in-
crease in forest edge species.

Results of the analysis of percolation models in-
dicate that important changes take place near p,
(= 0.5829 for random maps). The importance of
p, in landscape studies is obvious since contagion
effects, pest disturbance, forest fires and pest out-
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ples of the forested land type for each of three quadrangles of the USGS LUDA maps (solid line). The large circle at the end of the
cfd line locates the largest cluster sampled. The value of p indicates the fraction of forested land sampled from these quadrangles: (2.a)
Florence, NC, p = 0.4; (2.b) Montgomery, AL, p ,=  0.6; (2.~) Bluefield, WV, p = 0.8.
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Fig. 3. Illustration of the hypothetical relationship between the size of the map, the suitable resolution for landscape studies, and the
scale at which disturbance effects will be detected. See text for a description of this hypothesis.

breaks occur in habitats at or above p,.  This leads
to the question of what is the critical value of p for
actual landscapes. The relationship between land-
scape heterogeneity and spread of a disturbance is
not yet clear (Turner 1987b) and the identification
of pc  may elucidate this. The cumulative frequency
distributions of forests patches measured from
LUDA data (Fig. 2) shows that forests are more ag-
gregated than clusters generated from simple ran-
dom processes. This suggests that real landscapes
may have a pc lower than the theoretical value. A
number of testable hypotheses could bt generated
by considering how cover type, topography, or pat-
terns of disturbance would alter pc.

Probabilistic considerations predict that random
reductions in p will result in changes in the number,
size, shape (and character (inner vs outer edges) of
land cover patches. Given that individual species
display differential responses to these characteris-
tics, it may be possible to generate expected spatial
distributions of species abundance at the landscape
scale. In addition, it may be possible to select opti-
mum landscapes from scale and probabilistic argu-
ments to maintain desirable frequencies of size,
shape and edges of patches. Such considerations
could lead toward a general theory of landscape
ecology of immediate interest for application to
management issues.
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