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Abstract

A simple model of animal movement on random and patterned landscapes was used to explore the problems
of extrapolating information across a range of spatial scales. Simulation results indicate that simple relation-
ships between pattern and process will produce a variety of scale-dependent effects. These theoretical studies
can be used to design experiments for determining the nature of scale-dependent processes and to estimate
parameters for extrapolating information across scales.

Introduction

Ecological systems are directly affected by the spa-
tial heterogeneity of many physical and biological
processes. Models which simulate the relationships
between pattern and process and thus incorporate
the effects of spatial heterogeneity are useful for de-
veloping and testing quantitative rules for .predict-
ing across scales. Predictions from such models can
also assist in the development of parsimonious sam-
pling schemes to quantify prediction errors.

This paper presents a simple model that relates
landscape pattern to the movement of animals, uses
this model to explore the effect of changing spatial
scale on movement patterns, and estimates the
problems of extrapolating this information across
spatial scales. The next section discusses the
methods of generating random and patterned land-
scapes, the algorithms for simulating animal move-

ment, and the techniques used to analyze the simula-
tion results. The results of a series of simulation ex-
periments are then presented, and scale-dependent
effects are examined. A final set of experiments is
used to examine the problem associated with iden-
tifying critical thresholds in landscape pattern and
estimating its effect on the extrapolation process.

.
Movement in random and patterned landscapes

Percolation theory (Stauffer 1985) can be used to
generate two-dimensional gridded patterns that are -
visually similar to maps of landscapes (Gardner et
al. 1987). Two-dimensional percolation maps are
formed by randomly assigning a particular habitat
type (such as forest or grassland) to each grid site
with a probability, p. The value of p is usually esti-
mated empirically as the fraction of the landscape
covered by the habitat. According to the rules of
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percolation theory, clusters form when adjacent
sites (e.g., nearest neighbors) are of the same habitat
type. Few clusters larger than three sites are formed
when p is less than 0.3, with the average size of the
clusters increasing as p increases. As p approaches
0.6, adjacent clusters coalesce to form a single large
cluster that spans the map or ‘percolates’ from one
side to the other. The threshold value, pc, at which
a percolating cluster will be formed has been empiri-
cally determined for very large maps (> lo6 sites) as
p = 0.5928 (Stauffer 1985).

The patterns generated from random maps and
the changes in pattern as the size of the map and the
value of p vary have been described (Gardner et al.
1987). Percolation methods have also been used to
investigate the relationships between landscape pat-
tern and the spread of disturbances (Turner et al. in
press). The disturbance simulations have shown
that effects depend on the value of p for the sus-
ceptible habitat: whenp is less thanp,, habitat clus-
ters are fragmented, disturbance does not readily
spread across the landscape, and the frequency of
disturbance is the primary determinant of land-
scape effects; when p is greater than p,,,  the habitat
clusters are more continuous, the disturbance
readily spreads across the landscape, and the inten-
sity of disturbance becomes the important factor in
determining landscape effects. These results indi-
cate that relationships between pattern and process
will affect the extrapolation of information across
spatial and temporal scales.

A simple m’odel of random movement (SRM)

A Simple Random Movement (SRM) model of
animals across random or patterned landscapes was
developed to investigate the scale-dependent effects
of pattern and process. For each set of simulations,
the extent, m, of the landscape was specified as the
number of rows or columns of a square grid (i.e.,
a map of extent m parameters has exactly m2 sites).
Each site on the map was defined as either suitable
or unsuitable habitat for the animal being simu-
lated. At each time step the simulated animal was
allowed to move to the nearest neighbor sites within
the suitable habitat types but was not allowed to
move across sites of unsuitable habitat. For pat-
terned maps the locations of suitable habitat sites

were deterministically defined, while for random
maps the fraction of suitable habitat, p, was speci-
fied and the location of sites randomly generated.
Based upon percolation theory (Stauffer 1985),  an
animal can move across a map if p is greater than pc
(p, = 0.5928 for very large maps). Because we are
only interested in percolating systems, random
maps with values ofp equal to 0.6,0.8,  and 1 .O were
simulated.

Most simulations were begun by releasing animals
at a randomly chosen point on the ‘north’ side of the
map and allowing each animal to move at each time
step to connecting sites (north, south, east, or west)
with equal probability. The mean number of time
steps, T,,  of those individuals emerging from the
southern end of the map and the percent, P,,  of
simulated animals that successfully emerged were
calculated. Any animals that emerged to the north
were considered to have been unsuccessful in tra-
versing the landscape. Unless otherwise noted, the
maps were ‘wrapped’ in the east-west axis so that an
animal that emerged from the east side immediately
stepped back onto the map on the west side.

Because animals do no always move at random
and sometimes tend to walk in a relatively straight
line, we introduced a directional bias, B, into the
simulation procedure. Bias is calculated as a nor-
malized ratio of the probabilities of moving at each
step in a northerly or southerly direction. (The prob-
abilities of moving east or west remained fixed at
0.25 for all simulations.) When S > N, where N and
S are the probabilities of moving in a northerly or
southerly direction, then B = (1 .O - N/S). For ex-
ample, when N = 0.25 and S = 0.25, then B = 0.0,
and there is an equal probability of the animal mov-
ing in any direction. When N = 0.1 and S = 0.4,
then B = 0.75, and there is a much higher proba-
bility of moving in a southerly direction. A sub-
scripted bias term, B,, is used to indicate those ex-
periments where the bias for movement is toward
the north [i.e. N > S and, therefore, B, = (1.0 -
S/N)].

Figure 1 illustrates the general behavior of the
SRM model for 100 simulated animals on 10 repli-
cate maps of m = 8 (total of 64 sites per map) for
various levels of B and p (a total of 1000 simula-
tions per combination of B and p). The percent
emerging to the south, P,,  increases monotonically
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Fig. 1. The percent of animals that emerge to the south (P,) as
a function of the directional bias moving south (B) and the frac-
tion of the map with suitable habitat (p). Ten replicate maps of
size 8 x 8 and 100 animals were simulated (total of 1000 simula-
tions) for each combination of p and B.

as the available habitat, p, increases because, as p
increases, the habitat becomes more continuous
and the animal can take a more direct path to the
south. Lower values of p tend to keep an animal
moving about within the landscape, reducing the
probability that the animal will successfully tra-
verse from north to south. Thus, the slope of the
relationship is shallow when the bias to move south,
B, is zero because animals will frequently emerge on
the north side after relatively few steps. Under these
conditions the behavior of the animal is not linearly
dependent on the extent of the landscape or on p,
the proportion of available habitat. As bias in-
creases, the majority of animals move in a more
directed fashion, and many more emerge to the
south (Fig. 1).

The average time it takes for animals to traverse

the landscape and emerge to the south, T,,  varies
inversely withp and B. When B = 0.0, then T, =
97.5 at p of 0.6 but drops to 59.3 at p of 1 .O. The
faster transit times are due to the shorter average
path taken through the habitat. When the direc-
tional bias is high (B = 0.88),  then T, = 78.4 at p
of 0.6 and declines to 19.4 at p of 1.0. This latter
value of T, is only twice as long as the minimum
possible route across the map.

Effects of changing landscape size on movement

The SRM model was used to explore the effects of
changes in the size of the simulated landscape on
the predicted pattern of movement. Ten replica-
tions of maps of different extent (m = 3 to m = 10)
and values of p were simulated, and the movement
of 100 animals per map was performed (total of
1000 movement patterns per map type).

When the bias, B, to move south is low (B =
0.33),  the percent of animals emerging south, P,,
decreases as map size increases (Fig. 2). At low
values of bias (lower three curves), the larger land-
scapes provide a longer possible path length. The
animals remain within the landscape for a longer
period of time, increasing the probability of exiting
north. When the bias to move south is high (B =
0.88, the upper three curves in Fig. 2), animals con-
tinue to emerge to the south as the size of the land-
scape increases. For example, at p = 1.0, 90% of
the animals emerge to the south, and this percen-
tage is independent of landscape size. However, at
p = 0.6, the heterogeneity of habitat patches forces
the simulated animal to take a convoluted path to
avoid unfavorable habitat, and, therefore, animals
are more likely to emerge from the north side of the -
grid. Under these circumstances, there is a slight ef-
fect of landscape size (m) on the percent of animals
that successfully traverse the landscape, P,.

The mean time required to traverse the land-
scape, T,, increases with landscape size under all
conditions (Fig. 3). Larger landscapes simply re-
quire more steps to get across. In addition, if the
landscape has a greater heterogeneity of habitat
shapes (p = 0.6),  many sidetracks are required and
the path lengths become quite long. At p = 1 .O and
B = 0.88 (Fig. 3c),  the animal walks in a directed
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Fig. 2. The effect of landscape size (m) on the percent of animals
that emerge to the south (P,) for values of p from 0.6 to 1 .O and
for low and high levels of directional bias (B).

path across the landscape, and the mean transit
time, T,, is linearly related to the size of the land-
scape. When there is no directional bias (B = O.O),
there is a tendency for the animal to wander back
north at each step, increasing the average path
length. The effect of low bias is intensified when p
is also low because the suitable habitat patches are
more irregular in shape, causing the simulated
animal to follow a convoluted path across the land-
scape. Therefore, the time to move across the land-
scape is shortened by increased habitat availability
and increased bias (Fig. 4).

Extrapolating results across scales

The need utilize information available from labora-
tory, greenhouse, or field experiments at the land-
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Fig. 3. The relationship between the mean time of transit (T,),
map extent (m), and bias for values of p of (a) 0.6, (b)  0.8, and
(c)  1.0.

scape level has resulted in a number of papers that
attempt to understand how processes and data are
transformed as temporal and spatial scales are
changed (King et al. in press; O’Neill 1979; Turner
et al. this issue). Four alternative responses to
changes in scale can be defined: 1) The process
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Fig. 4. A three-dimensional plot of mean transit time (T,),
directional bias (B), and fraction of the map with suitable
habitat (p).

under consideration is insensitive to or unaffected
by changes in scale. The rate or measurement on the
fine scale is then identical to the rate or measure-
ment at broad scales, and no transformation is
required. 2) The process remains similar across
scales, and a simple transformation (e.g., a linear
relationship) can be derived. 3) The dominant pro-
cess remains similar, but additional processes and
constraints add ‘noise’ to the prediction process.
In this case, fine-scale information can explain
much, but not all, of the variance of large-scale pro-
cesses. 4) In the most difficult case, a change in
scale causes a change in the importance of a process
or process constraints, and extrapolation is risky or
impossible. We will illustrate the quantitative ef-
fects of each of these alternatives with the SRM
model.

Scale-independent processes

When a process is insensitive to scale, fine-scale in-
formation can be immediately applied at broader

scales. Consider, for example, the reflectance of a
vegetated surface as seen in a satellite image. For a
completely uniform, closed-canopy ecosystem, the
reflectance at the plot scale (e.g., Landsat image at
30 x 30 m resolution) is the same as the reflec-
tance at the landscape scale (e.g., AVHRR image at
1 x 1 km). Therefore, knowledge of the reflec-
tance at the fine scale is immediately applicable to
the broad scale.

However, scale-independent relationships may
not always be reciprocal. For example, when the
surface is not uniform, many different combina-
tions of vegetation and bare ground can lead to
identical reflectance values at broad spatial scales.
Therefore, knowing only the reflectance at the
broad scale does not necessarily lead to knowledge
about the reflectance on each smaller plot within
the landscape.

Scale-independent processes can be illustrated by
simulating the movements of 5000 animals on land-
scapes that are 1 site wide and 3 sites long and com-
paring these results to landscapes that are 3 sites
wide and 3 sites long. All sites on each landscape
were occupied by suitable habitat (p = l.O), and
the animal faced no barriers to movement. For each
experiment, the fraction of animals emerging at the
south (P,)  and the mean time of transit (T,) were
recorded. Landscapes were bounded east and west
by unsuitable habitat (i.e., the maps were not
wrapped in an east-west direction), allowing ani-
mals to emerge from only the north and south bor-
ders of the map. Animals that left the landscape to
the north were considered to be unsuccessful in
traversing the landscape. Sets of simulations were
performed at different levels of northerly (B,) or
southerly (B,) bias.

Table 1 shows that the percent of the simulated
animals that emerge to the south, P,,  for the two
landscape types are essentially identical, being un-
affected by either the width of the landscape or the
assumptions about the directional bias of animal
movement. Thus, information provided by the ob-
servations taken for one landscape can be reliably
extrapolated to the other. However, the mean time
of transit, T,, increases with increasing landscape
area because the wider landscape permits a more er-
ratic path to be taken before the simulated animal
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Table 1. Percentage of animals emerging from the south (P,)
and mean time of transit (T,) for two sizes of landscape.*

Landscape size

Directional bias 1 x 3 3 x 3

B B” PS TS PS Ts

0.75 1.0 4.1 1.0 7.2
0.67 2.0 4.0 2.0 7.5
0.5 7.0 4.3 6.0 7.7

0.0 0.0 25.0 4.8 25.0 8.4
0.5 53.0 4.6 53.0 7.6
0.67 68.0 4.2 68.0 7.1
0.75 76.0 3.9 75.0 6.6
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* For each combination of landscape size and directional bias,
5000 individuals were simulated by placing the simulated animal
at a random point on the north side of the map. The percent of
animals (P,) that emerge from the south side and the mean
number of time steps (T,) required to traverse the map were
measured. The directional bias, B, indicates a tendency to move
in a southerly direction, while B, indicates a tendency to move
in a northerly direction.

finally emerges. Thus, under identical conditions
one feature of the landscape (i.e,  , P,)  may be scale
independent while another (i.e., Ts)  may be scale
dependent.

Scale-dependent, similar processes

Few scale problems occur when a process is similar
in its effect across many scales. For instance, esti-
mates of primary production on a landscape cov-
ered by uniform vegetation can be extrapolated to
broad scales by simple multiplication. Another
more specific example is provided by King et al.
(1987) who assumed that a process (carbon dioxide
exchange between tundra vegetation and the at-
mosphere) was similar across northern latitudes,
with differences in CO, exchange due to differ-
ences in climatic driving variables. Models of fine-
scale processes associated with ‘point’ estimates
were then extrapolated by Monte Carlo integration
across the known spatial variability in climate.

Another scale transformation for processes that
are similar across a range of scales is discussed in
measurement theory (Mandelbrot 1983). The theory

Fig. 5. The natural logarithm of mean transit time (T,) plotted
against the natural logarithm of map size (m is the number of
rows and columns on the map and m2  is the total number of
map sites).

states that when the process is self-similar, then no
additional processes or constraints need to be ac-
counted for as the scale of observation changes.
The measured value of the process is then related to
the scale of the measurement (e.g., the length of the
ruler) raised to a fractal power, d. If the log of the
measurement is graphed against the log of scale,
such relationships show a straight line with a slope
d. Examples of fractal scale transformation have
been found in measurement sets (Burrough 1981,
1983; Lovejoy 1982; Lovejoy et al. 1987; Morse et
al. 1985; Mandelbrot 1967) with several recent ex-
amples in landscape ecology (Milne 1988; Sugihara
in press).

To illustrate a fractal scale transformation, we
used the SRM model to simulate the movement of
animals across landscapes that ranged in size from -
3 x 3 to 10 x 10. For each landscape, 5000 simulat-
ed animals were released into the north end of
the landscape, and the mean transit time (T,) for
animals that emerged to the south was recorded.
The landscapes contained no unsuitable habitat (p
= l.O),  and the animals moved completely ran-
domly without any southerly bias (B, = 0.0).

Figure 5 shows a graph of the natural logarithm
of T, versus the natural logarithm of landscape size
(m2). The results show a straight line with a slope
of 1.0, meaning that the scale transformation is a



Fig. 6. The percent of animals that emerge to the south (P,) and
mean transit time (T,) for three different landscape maps.

simple geometric change with a change in area of
the landscape. Such a simple scale transformation
can be expected only if no changes in process or
constraints occur as one changes scales.

Scale-dependent, dominant processes

Even when a single process dominates the pattern at
many scales, additional processes and constraints
may still introduce uncertainty into any attempt to
extrapolate fine-scale information to broad spatial
scales. This problem can be illustrated with the
SRM model by simulating movement across land-
scapes that differ slightly in their fine-scaled detail.

The movement of 5000 animals was simulated
across 4 x 4 landscapes with different fine-scale
patterns (Fig. 6). Each landscape contained seven
sites with favorable habitat and nine sites that were
unsuitable. The landscape had a constant value of
p, but the spatial arrangement of the habitat
differed. The animals moved at random (i.e.,
without directional bias), and those that emerged to
the north, east, or west were considered to have
been unsuccessful in traversing the landscape (i.e.,
landscapes were not wrapped in an east-west
direction).

The percent emergence and mean transit time
varied among three different landscapes (Fig. 6).
The distinction between the landscapes is that the

Fig. 7.’ The percent of animals that emerge to the south (P,) and
mean transit time (T,) for five similar landscape patterns.

longest north-south path length differs with the
spatial pattern. On landscape type I (Fig. 6),  the
longest north-south path length is 2. Therefore, an
animal can never take more than 2 steps in a south-
erly direction without confronting a barrier. As a
result, fewer than 2% of the animals succeeded in
moving through the landscape, and the average
time of transit (T,)  was 12 steps. Landscape type II
(Fig. 6) has a single north-south pathway of length
3, permitting more animals (4.3%) to emerge to the
south with a mean time of transit of 10.4 steps.
Landscape type III (Fig. 6) contains a single direct
path from north to south through the landscape, al-
lowing animals to move directly through the land-
scape without detours. As a result, more than 10%
of the animals emerge to the south with a mean
transit time of about eight steps.

The longest direct path length seemed to be cor-
related with the percent of animals that successfully
traversed the landscape. To determine if this one
pattern parameter is sufficient, we simulated a set
of 5 x 3 landscapes, all of which had a longest path
length of 5 and only two sites of unfavorable
habitat. If the length of the direct path controls
movement, then these four landscape configura-
tions should produce the same results.

Knowledge of the longest path length seemed to
predict percent emergence (Fig. 7). However, de-
spite the similarities among the five systems, there
were important differences in transit time. Because
the movement of 5000 animals was simulated for
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each landscape type, these differences are all sta-
tistically significant.

The mean transit time is related to the size of the
contiguous habitat areas on the landscape. When
the contiguous area is large (12 sites in landscape
type IV, Fig. 7),  the random path taken by each
animal tends to be longer. When the area is smaller
(in system types I and III, where the area is 9 units),
the transit time decreases. The map with the short-
est mean transit time (Fig. 7, system III) has the
fewest contiguous sites, providing less opportunity
for wandering around on long path lengths before
emerging.

Our search for a simple set of pattern parameters
which allow results to be resealed was not success-
ful. The fine-scale detail of landscape structure
(i.e., the specific arrangement of suitable habitat
sites) made a difference in determining the rate of
movement at larger scales. The system constraints
(e.g., the longest path length and the largest contig-
uous area) seem to be the best predictors of animal
movement and might explain much of the variance
in percent emergence and transit time at larger
scales.

Scale-dependent processes across hierarchical levels

Perhaps the most complex scale transformations
occur when movement from fine scale to broad
scale involves a movement across a hierarchical
level (Allen and Starr 1982; O’Neill et al. 1986). In
this case the dominant process may change com-
pletely, or new constraints may affect processes oc-
curring at fine scales. O’Neill (1979) provides a
number of examples of how changing hierarchical
levels can change the expression of a process. A
landscape example of a scale transformation across
hierarchical levels is given by Krummel et al. (1987).
Forest patches dominated by human activities
tended to be small, and their shapes were simple.
Large forest patches, however, were relatively free
of human activities, and their complex shapes were
determined by constraints associated with the to-
pography of the landscape.

Transformation of information between land-
scapes which differ in grain size can also be demon-
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Fig. 8. Changes in the percent emergence south (P,) as a func-
tion of the bias in movement and the grain of the landscape map.

strated with the use of the SRM model. A series of
simulations was conducted in which the percent of
the simulated animals emerging to the south for a
coarse-grained 1 x 3 landscape was compared with
those for a finer-grained 3 x 9 landscape. (These
simulated landscapes were of equal extent and thus
differ only in grain.) Unlike the simple identities we
found in Table 1, the probability of successfully
traversing the landscape is now a complex function
of bias or directionality in animal movement.

A large southerly bias (B, = 0.75) results in 75%
of the animals emerging to the south irrespective of
landscape grain (Fig. 8). Similarly, strong northerly
bias (B, = 0.75) results in no animals emerging
from the south side of the grid. At intermediate
levels of bias, the finer-grained landscape provides
many opportunities for the animal to take complex
pathways before emerging to the north, east, or
west. As a result, the 1 x 3 landscape shows a
greater probability of animals emerging to the
south. Because the fine-grain (3 x 9 landscape) in-
formation can predict the large-grain (1 x 3 land-
scape) behavior only at the extremes of bias, there
does not appear to be a simple rule for transforma-
tion across these scale differences.

For complex scale transformations, the only ap-
proach is to gather direct observations at both small
and large scales. Given observations at both scales,
it may be possible to move between scales by using
the observed empirical relationships, e.g., Fig. 8.
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But, in fact, no apriori extrapolation of the broad-
scale process is possible if only the fine-scale dy-
namics are known.

Therefore, knowledge of critical thresholds can
be useful in defining where extrapolations can oc-
cur for hierarchical systems. There has been a great
deal of interest in the literature on percolation
theory concerning the determination of scaling rela-
tionships near the critical threshold, p,, with re-
sults well established for infinite networks (Ohtsuki
and Keyes 1988; Voss et al. 1982; Margolina et al.

1984). These authors have shown that the time, t,
required to move across a random map scales as t
= md,  where m is the linear dimension (extent)
of the map and d is the fractal exponent relating
space to time [see arguments presented by Stauffer
(1987) justifying this use of a fractal dimension].
The exponent, d, can be experimentally deter-
mined for any percolation model by simulating
movement from the center of a map of size m,

measuring the time, t, necessary for the animals
to reach the map edge, and then calculating d as
[ln(t)/ln(m)].

A series of Monte Carlo simulations of the SRM
model was performed to determine scaling relation-
ships for maps which differ in grain (k) and extent
(m). Organisms were started in the center of the
map (rather than the north end) and moved at ran-
dom (e.g., no directional bias) with probability i

until they reached the edge of the map. The value
of i is the probability of an animal moving to an ad-
jacent site during one time step. (It had been set at
1.0 for all previous simulations.) Results show that
d varies as a function of p, the fraction of occupied
sites, and i, the probability of movement (Fig. 9).
The adjustment necessary to obtain the exact rela-
tionship for finite systems is t = l/k(m/2)d,  where
k is the grain size of the map. The division of m by
2 is necessary because the simulations were started
in the center of the map. As an example, suppose
that a 100 x 100 grid is placed over a landscape
map with the scale of each grid unit equal to 10 km.
The grain of the map, k, is equal to the length of
each grid unit, and the extent of the map, m, is then
1000 km (100 x 10 km). Thus, for this example the
time, t, to reach the map boundary will scale as
1/10(1000/2)d.

0 . 6
0.4

I I I I I

0 . 5 0.6 0.7 0 . 8 0 . 9 1.0

pxi

Fig. 9. Estimates of the critical exponent, d, for scaling predic-
tions when p.  the fraction of susceptible sites, and i, the proba-
bility of movement, are varied.

Figure 9 indicates that critical phenomena occur
as a function of the product of p and i. When (p *

z) = 1 .O, then d = 1 .O, and results scale as a direct
function of the extent of the map. When (p * i) c

p,, the landscape pattern prevents the animals
from moving (note the break in the curve for values
of p * i near 0.6). Because uncertainties are largest
near the critical threshold, the movement para-
meter, i, is best esimated when (p * z) is greater than
pc.  If d = 1.0, then (p * i) must also equal 1.0;
however, when d > 1 .O andp is known, then values
of i can be estimated independently of the grain
and extent of the map. (For more details on the eco-
logical applications of percolation theory for ex-
ploring critical phenomena see Cox and Durrett
1988; Grassberger 1983; MacKay and Jan 1984;
von Niessen and Blumen 1988). Similar methods
can be devised for extrapolating predictions of the
spread of annual plants (e.g., percent site, Table 1)
as a function of the grain and extent of the map.

Summary

A simple model of animal movement on patterned
and random landscapes has been used to illustrate
the translation of information across scales. The
results show that simple relationships between pat-
tern and process can result in a variety of scale-
dependent effects. Four alternative responses to
changes in scale were considered: (1) processes
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unaffected by changes in scale, (2) processes re-
maining similar across scales, (3) dominant pro-
cesses remain similar but affected by additional
constraints creating ‘noise’ in scale-dependent
predictions, and (4) processes altered by scale-
dependent changes in constraints that cause the ex-
trapolation to be risky or impossible.

These examples may provide some guidance for
studies relating pattern to process at several scales.
When a process is insensitive to scale (response l),
then fine-scale information is of great value be-
cause it can be immediately applied at broader
scales. Likewise, few scale problems occur when a
process is similar in its effect across many scales
(response 2). For instance, Fig. 5 shows a graph of
the natural logarithm of T, versus the natural loga-
rithm of landscape size (m2)  that can be used to re-
scale the time required for an animal to move across
a landscape to be resealed  to landscapes of different
size.

Devising a simple set of deterministic pattern
parameters that would allow results to be easily re-
scaled was a failure for scale-dependent relation-
ships (response 3) because the fine-scale detail of
landscape structure (i.e., the specific arrangement
of habitat sites) is important in determining the rate
of movement at larger scales. The system con-
straints (e.g., the longest path length and the largest
contiguous area) seem to be the best predictors of
animal movement and might explain much of the
variance in percent emergence and transit time at
larger scales.

Perhaps the most complex scale transformations
occur when movement from fine scale to broad
scale involves a movement across a hierarchical
level (response 4). In this case the dominant process
may change completely, or new constraints affect-
ing the processes may be involved. Presently, the
only satisfactory approach to this class of scale-
dependent problems is an empirical one - to gather
direct observations at both small and large scales.
Given observations at both scales, it may be pos-
sible to move between scales by using the observed
empirical relationships (e.g., Fig. 8),  but no apriori
extrapolation of the broad-scale process is possible
if only the fine-scale dynamics are known.

An alternative approach to the problems of ex-

trapolating information across a hierarchical sys-
tem (response 4) is to identify critical thresholds be-
low or above which extrapolations may be possible.
Critical thresholds exist when slight changes in
landscape pattern produce sudden changes in the
response of the process. These thresholds have
been identified by a number of theoretical studies
(Rosen, this issue) and can be shown to place ulti-
mate limits on the extrapolation of fine-scale mea-
surements to broader spatial scales. Thus, extrapo-
lation of information across a critical threshold
requires information on the behavior of the system
on both sides of the threshold.

In addition to the many practical difficulties of
performing studies at several scales, the results
presented here show that careful experimental tech-
niques are necessary to prevent process from being
confounded with pattern. For example, the upper-
most curve on Fig. 2 shows that, at high values of
directional bias in animal movement (B = 0.88)
and habitat availability (p = 1 .O), there is no rela-
tionship between percent of animals that emerge
from the southern edge of the landscape, P,, and
landscape size. If experiments were conducted un-
der these conditions, one would conclude that size
has no effect on the process. This conclusion may
be erroneous because information was gathered
only across a limited range of values of the
parameters defining landscape pattern. At other
combinations of B and p the interaction of pattern
and process is dramatically different (Fig. 2). The
complexity of the relationships requires that all
of the factors influencing movement on the land-
scape be considered before reaching general con-
elusions .

The use of our simple model for relating pattern
and process is not intended to predict the response
of actual animals to real landscape patterns. How-
ever, as our understanding of relationships between
pattern and process improves, we believe that theo-
retical investigation of scale-dependent relation-
ships will provide important insights for new empir-
ical studies and lead to a useful predictive landscape
theory.
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