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Abstract. Studies designed to understand species distributions and community assemblages typically

use separate analytical approaches (e.g., logistic regression and ordination) to model the distribution of

individual species and to relate community composition to environmental variation. Multilevel models

(MLMs) offer a promising strategy for integrating species and community-level analyses. Here, we

demonstrate how MLMs can be used to analyze differences in species composition of communities across

environmental gradients. We first use simulated data to show that MLMs can outperform three standard

methods that researchers use to identify environmental drivers of the species composition of communities,

redundancy analysis (RDA), canonical correspondence analysis (CCA), and nonmetric multidimensional

scaling (NMDS). In particular, MLMs can separate the effects of collinearity among environmental drivers

and factor out the effect of changes in overall species abundances or occurrences that do not involve

changes in composition. We then apply MLMs to presence/absence data for 14 species of understory herbs

and topographic, biotic, and edaphic variables measured in 54 forested plots in the Southern Appalachian

Mountains. In addition to providing information about community composition, MLMs simultaneously

identify the responses of individual species to the environmental variables. Thus, MLMs not only have

potentially superior statistical properties in analyses of community composition compared to standard

methods, but they simultaneously provide detailed information about species-specific responses

underlying the changes in community composition.
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INTRODUCTION

Ecologists have a long-standing interest in

understanding the distributions of species and

differences among species assemblages (Clem-

ents 1916, Gleason 1926, Whittaker 1956). There

are numerous quantitative methods for modeling

species distributions, all of which have different

advantages and disadvantages (see Legendre

and Legendre 1998, Guisan and Zimmermann

2000, Elith et al. 2006). Methods for investigating

the effects of environmental variables on species

and ecological communities generally fall into

two categories: those that focus on the distribu-

tions of individual species and those that focus

on differences in the composition of communi-

ties. While these approaches might be combined

within the same study, they are typically per-

formed as separate analyses (e.g., Turner et al.

2004, Driscoll and Weir 2005, Hottola and
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Siitonen 2008). The composition of communities
is often analyzed using ordination methods that
describe how species assemblages vary (Bray and
Curtis 1957) by placing communities along one
or multiple axes that explain a high proportion of
the variance among communities (McCune and
Grace 2002). Although ordination nicely de-
scribes differences in community composition,
disentangling the drivers of these patterns is
often indirect, as many environmental variables
may be correlated with a single axis. To analyze
distributions of individual species, logistic or
linear regression is often used (e.g., Pearce et al.
1994, Turner et al. 2003). Regression analyses can
be difficult to interpret, however, because they
require separate models for each species within
an ecological community (see Guisan and Thuil-
ler 2005, Dormann 2007). Some studies have
addressed these difficulties by describing the
shapes of multiple species’ ecological response
curves along environmental gradients (Oksanen
and Minchin 2002, Rydgren et al. 2003) and using
descriptive hierarchical models (Huisman et al.
1993). Still, it is difficult to tie together results
from ordination on community composition with
results from regression on separate species, even
though they come from the same data.

Multilevel models (MLMs; Gelman and Hill
2007) offer a promising strategy for integrating
species- and community-level analyses from
which inference can be drawn at both levels
simultaneously. To understand this approach,
consider a data set giving the presence/absence of
N species among M sites, with several environ-
mental variables measured for each site. A MLM
could be constructed as a set of simultaneous
logistic regressions for the presence/absence of
each species using the environmental measure-
ments as independent variables. In addition to
information about the distributions of individual
species, the MLM allows estimation and statisti-
cal tests for variation among species in their
response to the different environmental vari-
ables. Because differences among communities
result from variation among species’ responses to
environmental variables, by testing for variation
among individual species the MLM will identify
differences in community composition and asso-
ciate these with environmental variables. MLMs
have been used in ecology to incorporate
variables into predictive models at different

spatiotemporal scales (Cushman and McGarigal
2004, Duffy et al. 2010, Qian et al. 2010).
Furthermore, Qian and Shen (2007) show that
MLMs are able to discern a treatment effect that
is smaller than detected by conventional ap-
proaches. However, the application of MLMs for
easily combining species- and community-level
analyses of community composition is new.

To demonstrate how MLMs can be used to
analyze changes in species composition of
communities across environmental gradients,
we first used simulated data to assess the ability
of MLMs to separate the effects of multiple
environmental drivers on community composi-
tion. Using the simulated data, we compared the
MLM with three frequently used multivariate
methods, including two canonical analysis meth-
ods (redundancy analysis, RDA, and canonical
correspondence analysis, CCA) and one indirect
ordination method (nonparametric multidimen-
sional scaling, NMDS), to identify environmental
drivers of community composition statistically.
We then applied MLMs to field data on the
presence/absence of 14 herbaceous species com-
mon to southern Appalachian deciduous forests
to address two questions: (1) What environmen-
tal variables predict the presence/absence and
community composition of forest herbs? (2) How
do the results from a MLM approach compare to
those from RDA, CCA, and NMDS? Our main
goal is to introduce MLMs and demonstrate their
performance in identifying environmental gradi-
ents that may determine both species distribu-
tions and community composition. Therefore, we
use the real data set to demonstrate the useful-
ness of the MLM approach, rather than present a
comprehensive ecological analysis of herbaceous
species distributions in the Southern Appala-
chians. Furthermore, we compare the MLM
approach with three standard methods, rather
than attempt to conduct a comprehensive com-
parison of more-recent methods for analyzing
community composition data.

METHODS

Here, we first present a simulation model for
communities assembled along environmental
gradients to compare MLM with RDA, CCA,
and NMDS; we describe the simulations before
describing the MLM approach to give a clear
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initial picture of the types of data we consider.
After describing the methods, we present the
data from the southern Appalachian deciduous
forests and the ecological background for this
study.

Simulations
We simulated community composition using a

pool of 20 hypothetical species for each of 30 sites
that varied along 5 environmental gradients. We
assumed that the number of individuals of each
species i at each site j follows a Poisson
distribution with mean ki that depends on xk,j,
the value of environmental variable k in site j,

ki ¼ expðai þ bi;1x1;j þ bi;2x2;j þ bi;3x3;j

þ bi;4x4;j þ bi;5x5;jÞ: ð1Þ

For simplicity, we assume that species respond
linearly to the environmental variables, although
quadratic or other nonlinear functions could
equally be used (and were used in the analysis
of the forest herb data set). To generate variation
among communities, we assumed that species
differ in the value of their coefficients bi,k that
dictate their responses to the environmental
gradients. We set up challenges for statistical
methods to identify species and community
responses to environmental gradients by simu-
lating data under the following scenario:

1. Environmental variable x1 varies among
sites independently from other environmen-
tal variables, and the values of bi,1 are given
by a Gaussian random variable with mean
zero and standard deviation 0.4.

2. The distribution of x2 among sites is highly
correlated with the distribution of x3 (q ¼
0.7), and like x1 the values of bi,2 are given
by a Gaussian random variable with mean
zero and standard deviation 0.4.

3. The distribution of x3 is highly correlated
with that of x2 (q ¼ 0.7), yet environmental
variable 3 has no effect on the distribution
of species (bi,3 ¼ 0).

4. Environmental variable x4 varies among
sites independently of other environmental
variables, and the values of bi,4 ¼ 0.5 for all
species, implying all species respond in the
same way to x4.

5. Environmental variable x5 varies among
sites independently from other environmen-

tal variables, yet species do not respond to
x5 (bi,5 ¼ 0).

Simulated in this way, a statistical test should
identify environmental variables x1 and x2 as
explaining variation in community composition
among sites, while the remaining variables x3, x4,
and x5 should not be significant.

We have made an explicit assumption about
the definition of community composition. We
assumed that two communities that have the
same relative abundance of species have the
same composition, regardless of the total abun-
dance of species. Thus, even though environ-
mental variable x4 increases the abundance of
species, it does not change composition because
it changes the abundances of all species in the
same way. Specifically, if the mean abundances of
species 1 and 2 are exp(a1þ b1,4x4,j) and exp(a2þ
b2,4x4,j) in site j, and if b1,4¼ b2,4, then the relative
mean abundance is k1/k2 ¼ exp(a1 � a2) which is
independent of x4.

These assumptions created community data in
which the least and most common species
occurred in an average of 4.9 and 29.3 sites,
respectively, and on average species occurred in
18.4 sites. These characteristics of the simulated
data sets correspond roughly to the characteris-
tics of the real data set from the southern
Appalachian deciduous forests, but with a
slightly greater range of occurrences between
least and most common species (see Results).

Multilevel models
We used a multilevel modeling (MLM) frame-

work in which the abundance or presence/
absence of species is the response (dependent)
variable and environmental variables are the
predictor (independent) variables (Gelman and
Hill 2007). The MLM makes it possible to
estimate simultaneously the responses of multi-
ple species to environmental variables, thereby
also giving a summary of the environmental
determinants of community composition.

For the case of abundance data, a formal
description of the model with only one environ-
mental variable (x) is

PRðYq ¼ nÞ ¼ PoissonðkqÞ

kq ¼ expðaspp½q� þ bspp½q�xsite½q�Þ
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aspp½q� ¼ aþ dspp½q�

bspp½q� ¼ bþ espp½q�

d ; Gaussianð0;r2
interceptÞ

e ; Gaussianð0;r2
slopeÞ ð2Þ

where Yq is the number of individuals of each
species at each site (q¼1, . . . , NM, where N is the
number of species and M is the number of sites).
The expectations of the Poisson distributions kq

are themselves treated as random variables, with
the distribution of log(kq) containing both fixed
and random effects. The intercepts and slopes for
each species, aspp[q] and bspp[q], have mean values
of a and b (treated as fixed effects) and variances
r2

intercept and r2
slope given in the Gaussian

random variables (random effects) d and e. The
functions spp[q] and site[q] are used to give the
identity of the species and site that corresponds
to observation q in the data set (Gelman and Hill
2007).

The MLM given by Eqs. 2 can be interpreted as
a set of Poisson regressions in which differences
in slopes and intercepts among species are
random variables. Thus, for example, if there
were a data set with only three species having
slopes from Poisson regressions of b1, b2 and b3,
then the model would assume that the values of
b1, b2 and b3 were drawn independently from a
Gaussian distribution with mean b and variance
r2

slope. Therefore, the fixed effect b gives the
average response of the individual species to the
environmental variable, and the variance of the
random effect r2

slope gives the variability among
species in their response to the environmental
variable (i.e., changes in community composi-
tion). Differences in community composition are
embodied in r2

slope, because the greater the
difference among species in response to the
environmental variable, the greater will be the
changes in community composition along the
corresponding environmental gradient. Al-
though we have presented Eqs. 2 with only a
single environmental variable, it can be extended
to include numerous environmental variables.
Similarly, although we have assumed that log(kq)
is a linear function of the environmental gradi-

ents, quadratic and higher-order polynomial
terms could be added (as both fixed and random
effects) to account for nonlinear responses of
species to environmental gradients.

The MLM for presence/absence of species can
be constructed similarly;

PrðYq ¼ 1Þ ¼ lq

lq ¼ logit�1ðaspp½q� þ bspp½q�xsite½q�Þ

aspp½q� ¼ aþ dspp½q�

bspp½q� ¼ bþ espp½i�

d ; Gaussianð0;r2
interceptÞ

e ; Gaussianð0;r2
slopeÞ ð3Þ

where Yq is the presence (1) or absence (0) of
species among sites. The logit function, logit( p)¼
log( p/(1 � p)), takes values from �‘ to þ‘ as p
varies from 0 to 1. Otherwise, the MLM is the
same as that for Poisson-distributed data (Eqs. 2).
A similar model, but including phylogenetic
relationships among species, is derived in Ives
and Helmus (2011).

Identifying environmental effects on commu-
nity composition involves testing whether vari-
ances r2

slope differ from zero. For this we
performed likelihood ratio tests, comparing the
models with and without the variance term using
maximum likelihood (ML). Because the possible
values of r2 are constrained to be positive, the
asymptotic values of the log-likelihood ratio,
�2logL, are distributed by a 50:50 mixture of v20
and v2

1 distributions, so that the P-values given
by the constrained likelihood ratio test are half
the values of those calculated from the v2

1 that
would be computed in an unconstrained likeli-
hood ratio test (Self and Liang 1987, Stram and
Lee 1994). The estimates of the mean responses of
species to environmental gradient k, bk, asymp-
totically follows a Gaussian distribution, which is
used for statistical tests. The MLMs were
constructed using lmer (Bates et al. 2008) in R
version 2.14.1 (R Development Core Team 2011),
and example code is provided in the Supplement.

The results from MLM analyses can be
displayed as biplots like those produced by
canonical analysis methods. To focus on the
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variation among sites caused by variation in
species-specific responses to environmental gra-
dients, we computed the predicted values of kq

(Eqs. 2) or lq (Eqs. 3), and subtracted from these
the predicted values calculated without the
environmental random effects (espp[i] ¼ 0); the
resulting values represent variation among sites
that is explained by differences among species in
their responses to the environmental gradients.
We then performed a principal components
analysis (PCA) on these values. This use of
PCA on predicted values is similar to redundan-
cy analysis (RDA) (Palmer 1993), although for
RDA the PCA is performed on the predicted
values from standard regression when plotting
the results in terms of the linear combination
(LC) scores (Oksanen et al. 2011). Arrows
depicting the influence of each environmental
variable are calculated by weighting each site by
the value of its environmental variable and
plotting the centroid at the tip of the arrow.

RDA, CCA, and NMDS
Redundancy analysis (RDA) and canonical

correspondence analysis (CCA) are canonical
analyses that are designed to identify variation
among communities that can be explained by
data on environmental gradients (Legendre and
Legendre 1998). They are closely related, differ-
ing in that RDA is based on the Euclidean
distance between communities whereas CCA is
based on the v2 distance. Nonmetric multidi-
mensional scaling (NMDS) is an indirect ordina-
tion method (Clark 1993), although in
conjunction with permutation tests involving
environmental variables, it is often used to assess
the relationships between community composi-
tion and environmental variables. NMDS has the
potential advantage of preserving the ordering of
relationships among communities but not the
distance, in this sense not requiring a strict
adherence to an a priori distance metric. None-
theless, a distance metric must still be specified to
determine distance ranks. We used the Bray-
Curtis (Bray and Curtis 1957) distance and a
maximum of 200 iterations for the NMDS. We
compared the MLM with all three of these
established methods, because all are frequently
used in analyses of community composition
along environmental gradients.

For application to the simulated data, we used

partial RDA and CCA in which the effect of each
environmental gradient xi was determined after
‘‘partialing out’’ the effects of the other environ-
mental variables (Legendre and Legendre 1998);
this should improve the separation of effects in
the face of collinearity such as between x2 and x3.
For abundance data, we used a log(þ1) transfor-
mation. Statistical significance of the associations
of environmental variables with variation in
community composition was obtained using
10,000-permutation tests. Finally, to compare
the results among the four methods, we calcu-
lated the procrustes score between each pairwise
set of results. The procrustes score gives a
measure of minimum dissimilarity between two
matrices, in our specific case the community
values on the first two axis representing the
greatest variation among communities. All anal-
yses were performed using the vegan library
(Oksanen et al. 2011) in R version 2.14.1 (R
Development Core Team 2011), and example
code is provided in the Supplement.

Application of MLM to understory herbs
To illustrate the use of MLM and other

methods, we used new field data from a study
of the distribution of native understory herbs in
the Southern Appalachians, for which surpris-
ingly little is known despite their ecological
significance. Understory forest herbs represent
the majority of plant diversity in temperate
forests and are especially sensitive to disturbance
across broad temporal and spatial scales (Gilliam
2007). Furthermore, many have extremely limit-
ed dispersal (Ehrlen and Eriksson 2000) and must
respond to changing conditions rapidly or face
local extinction. Many forest herbs occupy their
southerly range limits in the Southern Appala-
chians due to cool, moist, high-elevation cli-
mates. If this region warms significantly as
predicted (as much as 1–78C according to Mearns
et al. 2003), certain species may be faced with
severely reduced ranges as high elevation habi-
tats shrink in size and are replaced by warmer,
drier climates currently found at lower eleva-
tions.

We applied MLM, RDA, CCA, and NMDS to
presence/absence data for 14 native herbaceous
species among 54 plots in the French Broad River
Basin of western North Carolina, USA (see
Appendix for detailed field sampling methods).
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Environmental variables recorded for each plot
included total herb and shrub cover, litter depth,
basal area of all trees using the point-quarter
count method (Stearns 1949), elevation, aspect
(converted to a relative moisture value), slope,
terrain shape, and distance to stream. Five soil
cores were obtained from each plot and analyzed
for soil texture, total nitrogen, organic matter,
phosphorus, potassium, calcium, magnesium,
and pH. In the statistical analyses, we included
the basal area of sugar maple (Acer saccharum),
tulip poplar (Liriodendron tulipifera), and chestnut
oak (Quercus prinus) because they produce litter
of varying quality and grow on sites with
different moisture levels. A. saccharum and L.
tulipifera dominate moist sites, and Q. prinus
dominates drier sites (Whittaker 1956). L. tulipi-
fera is a fast-growing tree common to historically
disturbed sites (Kuhman et al. 2011).

After checking for collinearity among vari-
ables, we excluded soil nitrogen and organic
matter from the models because they were highly
correlated with elevation (q ¼ 0.72, q ¼ 0.73),
which was retained because it is a strong proxy
for climate (Bolstad et al. 1998). We used
phosphorus and calcium as representative soil
variables in the models. Calcium was strongly
correlated with pH (q ¼ 0.70), magnesium (q ¼
0.70), and potassium (q ¼ 0.59). We transformed
all environmental variables by subtracting the
mean and dividing by the standard deviation, so
that each variable had mean zero and variance 1;
this makes it possible to compare regression
coefficients directly because they measure effect
sizes. To reduce the number of variables in the
MLM, we used Akaike’s information criterion
(AIC) for model selection, always including the
fixed effect b for an environmental variable if the
corresponding random effect espp[i] was included.
Quadratic forms of all environmental variables
were included as both fixed and random effects
in the model selection to account for possible
nonlinear effects on species occurrences.

We performed RDA, CCA, and NMDS ordi-
nations on the herb data set using the 7
environmental variables that were significant as
either fixed or random effects in the best MLM;
these were elevation, soil calcium, soil phospho-
rus, basal area of L. tulipifera and Acer saccharum,
and herb cover. We limited the analyses to the 7
variables identified by MLM, because RDA and

CCA are recommended for use with only
environmental variables likely to be important,
rather than for data exploration (Legendre and
Legendre 1998), and to simplify comparisons
among methods. We excluded quadratic effects
from the ordination analyses because they can
cause warping of ordination space (ter Braak and
Prentice 1988), and because no significant qua-
dratic terms were identified as random effects
using the MLM. The analyses of the data were
performed in the same way as those in the
simulation study.

RESULTS

Simulations
We simulated 2000 data sets and analyzed

each using MLM, RDA, CCA, and NMDS to
detect the effect of 5 environmental variables on
community composition. We were primarily
interested in assessing type I and type II errors,
which are determined by the proportion of data
sets in which ‘‘statistically significant’’ effects of
environmental variables were identified at the
0.05 level (Fig. 1). From the design of the
simulations, environmental variables x1 and x2
affect community composition, whereas x3, x4,
and x5 do not.

MLM had good power to detect the effects of
x1 and x2, while simultaneously failing to
(falsely) identify effects of x3, x4, and x5. The
power of the tests was slightly higher for the
count data than the presence/absence data,
reflecting the greater information available when
abundance is included. The nominal rejection
rates of the null hypotheses for environmental
variables x3, x4, and x5 were near 0.05, as they
should be.

RDA performed well in identifying x1 and x2
as drivers of community composition, with
similar power to MLM for x1 but lower power
for x2 (Fig. 1). The lower power of RDA to detect
x2 relative to x1 suggests that RDA is prone to
confusion by collinearity (between x2 and x3).
The nominal rejection rates for x3 and x5 were
5%, as they should be. However, x4 was
identified as having a strong effect on composi-
tion in many simulated data sets. Thus, RDA is
very sensitive to the overall abundance of
species, identifying communities as having dif-
ferent composition even if the relative abundanc-
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Fig. 1. Results from 2,000 simulations using multilevel modeling (MLM), redundancy analysis (RDA),

canonical correspondence analysis (CCA), and non-metric multidimensional scaling (NMDS) for count (left

panels) and presence/absence data (right panels). Bars show the proportion of data sets for which P , 0.05.

v www.esajournals.org 7 September 2012 v Volume 3(9) v Article 79

JACKSON ET AL.



es of species are the same. The performance of
CCA was similar to RDA, although CCA had
lower power in all cases. This likely occurs
because in the simulations species abundances
depended linearly on the environmental vari-
ables, and when this is the case RDA should be
superior to CCA (Doledec et al. 2000).

NMDS generally had lower power than MLM
and often than RDA and CCA. In addition to
falsely identifying x4 as a determinant of com-
munity composition, NMDS also frequently
falsely identified x3. Even though x3 did not
affect the abundance of species, it was strongly
correlated with x2, which did. We performed
partial RDA and CCA analyses that are explicitly
designed to factor out collinearity, while NMDS
did not have this capability. Therefore, the
susceptibility of NMDS to collinearity was
expected.

Overall, statistical advantages of MLM include
good statistical power and the ability to separate
differences in community composition sensu
stricto from differences due to overall abundanc-
es, such as those caused by x4. This does not
mean, however, that MLM did not identify the
effect of x4 to increase the abundance of all
species. In fact, the fixed coefficient b4 for the
shared effect of x4 on all species was statistically
significant in all 2000 simulations.

Analyses of forest herbs
Of the 14 focal herb species, the six most

common species each occurred in .50% of plots,

with the least common occurring in 26% of the
plots (Appendix: Table A1). In the MLM, the
best-fitting model had no competing models with
DAIC , 2. The probability of observing any focal
species in a plot was greatest at high values of
elevation (but with a negative quadratic effect)
and basal area of sugar maple (ACSA), with
negative quadratic effects for herb cover and soil
calcium (fixed effects; Table 1). The among-
species variation in presence was strongly influ-
enced by elevation, soil calcium, basal area of
tulip poplar, and soil phosphorous (random
effects; Table 1).

Application of RDA, CCA, and NMDS yielded
similar, though not identical results. MLM, RDA,
and CCA all identified elevation, soil calcium,
basal area of tulip poplar, and soil phosphorous
as statistically significant environmental vari-
ables determining community composition.
RDA also identified basal area of sugar maple
as marginally significant (P¼ 0.06). While NMDS
identified elevation, soil calcium, and basal area
of sugar maple, it did not identify basal area of
tulip poplar and soil phosphorous as statistically
significant environmental variables.

Biplots of the results reveal similar but not
identical results in the distribution of communi-
ties in the first two ordination axes (Fig. 2). The
most similar results were for RDA and CCA,
with a procrustes dissimilarity score of 0.14,
while these both differed from MLM with scores
of 0.19. NMDS was the most dissimilar, with
scores of 0.73, 0.71, and 0.63 from RDA, CCA,
and MLM, respectively. That NMDS is the most
dissimilar method parallels the result that it did
not identify the same environmental variables as
the other methods (Table 2). Finally, in the MLM,
RDA, and CCA the effect of elevation was nearly
orthogonal to the effects of basal area of tulip
poplars (LITU) and soil calcium (Ca), indicating
that these two sets of variables partition commu-
nities separately.

In addition to comparing communities, MLM
simultaneously gave information at the species
level in the form of regression coefficients of the
effects of separate environmental variables on
each species; environmental variables that have
significant variability among species explain
differences in composition among communities
(Table 3). Elevation was the most important
environmental variable for eight species, all of

Table 1. Coefficients of fixed and random effects in the

best (lowest AIC) multilevel model for data on

Southern Appalachian understory herbs. Basal area

of trees (m2) are indicated by ACSA¼Acer saccharum

and LITU ¼ Liriodendron tulipifera.

Variable Fixed effects Random effects

Intercept 0.65* 1.20
Elevation 0.83** 0.99***
Elevation2 �0.26** ...
ACSA 0.35** ...
TreeBA (total tree basal area) 0.18� ...
% herb cover 0.16 0.15�
% herb cover2 �0.32** ...
LITU 0.13 0.28**
Soil Ca 0.50� 0.61***
Soil Ca2 �0.29** ...
Soil P 0.09 0.27**

� P , 0.1, * P , 0.05, ** P , 0.01, *** P , 0.001.

v www.esajournals.org 8 September 2012 v Volume 3(9) v Article 79

JACKSON ET AL.



which were associated with high elevation sites

except for one, while soil calcium was the most

important driver for five species; four species

were positively associated with soil calcium and

one was negatively associated. Basal area of tulip

poplars and soil phosphorus were each the most

important variables for one and two species,

respectively.

DISCUSSION

We used simulations to test the statistical

performance of MLM and analyses of a new

data set to compare results with three other

common methods used to analyze community

composition, RDA, CCA, and NMDS. Using

simulated data, MLM had better power to detect

environmental drivers (x1 and x2) of community

composition than RDA, CCA, and NMDS. MLM

was also less susceptible to loss of power caused

by collinearity between environmental variances

(x2 and x3); even using partial RDA and CCA,

which removed the false identification of envi-

ronmental variables (x3), these methods had

lower power to detect the collinear environmen-

tal driver (x2). NMDS falsely identified collinear

Fig. 2. Ordination plots of understory herb data using multilevel modeling (A), redundancy analysis (B),

canonical correspondence analysis (C), and non-metric multidimensional scaling (D), with significant

environmental vectors overlain. Elevation is the elevation of the plot, TreeBA is the basal area of all trees,

ACSA is the total basal area of Acer saccharum, LITU is the total basal area of Liriodendron tulipifera, Ca is soil

calcium, P is soil phosphorous, and herb is the average percent cover of all herbs.
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environmental variables as affecting community
composition, even when they did not (x3).
Finally, MLM was the only method consistently
distinguishing between environmental variables
that affected all species in the same way (x4) from
those that affected all species differently (x1 and
x2).

We believe it makes most sense to consider
communities with the same relative abundances
of species, or communities with the same relative
probabilities of containing each species, as
having the same composition. This makes a strict
distinction between the number of species in a
community and the identities of those species.
MLM is the only method that made this
distinction. For the analyses of abundance data

using RDA, CCA and NMDS, differences in
abundances among sites can be first removed by
dividing the abundances of each species in a site
by the total abundance of species in that site; this
should make RDA, CCA, and NMDS less
sensitive to differences in mean abundances
among sites when identifying differences among
sites in community composition. However, this
standardization of abundance data cannot be
applied to presence/absence data. Furthermore,
ordination methods that estimate species optima
as weighted averages of plot scores (e.g., CA and
DCA) ignore species relative abundance differ-
ences (Økland and Eilertsen 1996). Thus, the
extent to which multivariate methods differenti-
ate communities with the same relative abun-
dances differs among methods.

The MLM had advantages over other methods
when applied to the forest herb data set in its
ability to disentangle drivers of individual
species distributions, along with overall commu-
nity trends. The MLM method is hierarchical;
thus, variables can be nested within groups
(species), requiring only one model to explain
the distributions of many species within a
framework of community composition. This
contrasts the commonly used approach of per-
forming separate logistic regressions on the
presence/absence of the 14 species. MLMs can
identify species with narrow environmental
gradient ranges that may be especially sensitive
to disturbance or changes in habitat suitability.
For example, five species (C. thalictroides, L.

Table 2. Significance of environmental variables for

determining community composition using likeli-

hood ratio tests for random effects in the best

multilevel model (MLM) and 10,000 permutations

for three ordination techniques: redundancy analysis

(RDA), canonical correspondence analysis (CCA)

and non-metric multidimensional scaling (NMDS).

Variable MLM RDA CCA NMDS

Elevation *** *** *** ***
Herb � �
Ca *** ** ** **
LITU ** ** **
Soil P ** ** **
ACSA � *
TreeBA (total tree basal area) �

�P , 0.1, * P , 0.05, ** P , 0.01, *** P , 0.001

Table 3. MLM random effect coefficients by species of southern Appalachian

understory herbs. Coefficients are the random effect plus the estimate for fixed

effects in order to account for the mean slope. The most important predictor

variable (largest effect) for each species is bold.

Species Elevation Herb LITU Ca P

Actaea racemosa 0.59 0.51 0.11 1.24 0.13
Arisaema triphyllum 0.72 0.45 0.45 1.19 0.23
Caulophyllum thalictroides 1.07 0.44 0.16 0.68 0.44
Chimaphila maculatum �1.11 �0.27 �0.95 �0.61 �0.16
Galium latifolia 0.38 �0.09 0.06 0.35 �0.69
Geranium maculatum 0.42 0.43 0.44 0.24 0.38
Lilium superbum 1.58 0.54 0.30 �0.03 0.39
Polygonatum biflorum 0.18 �0.06 �0.20 0.37 �0.59
Prosartes lanuginosum 2.25 0.08 0.08 0.60 0.01
Sanguinara canadensis 0.04 0.27 0.68 0.94 �0.22
Thalictrum diocium 0.53 �0.13 �0.13 0.74 0.38
Trillium grandiflorum 1.74 0.09 0.47 0.39 0.03
Uvularia grandiflora 1.92 0.07 �0.26 1.41 0.22
Viola rotundifolia 0.48 �0.03 0.34 �0.83 0.64
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superbum, P. lanuginosum, T. grandiflorum, and U.
grandiflora) were associated with high elevation
sites using the MLM. These species may be
particularly sensitive to climate warming and at
risk of losing their southern ranges if high
elevation habitats become unsuitable. Four of
these species are ant-dispersed (all except C.
thalictroides), furthering limiting their ability to
adapt to shifting ranges because they cannot
migrate very far or fast. Trillium species have also
been shown to be sensitive to land-use history
(Vellend 2004, Jenkins and Webster 2009), sug-
gesting that even if areas of suitable climate exist,
this group may be vulnerable if it cannot
establish viable populations in secondary forests.
Furthermore, basal area of tulip poplar, L.
tulipifera, was important as a random effect in
the MLM. In the southern Appalachians, tulip
poplar dominates previously disturbed sites with
mesic, fertile soils and generates a thin leaf litter
layer (Kuhman et al. 2011). Most species were
positively associated with tulip poplar, particu-
larly G. maculatum and S. canadensis, possibly
indicating a correlation with suitable edaphic
conditions. When the spatial pattern in species
composition of the herb layer is significantly
correlated with that of the overstory layer, the
two strata demonstrate the ‘‘linkage phenome-
non’’ described by Gilliam (2007). While we do
no explicitly test for such linkages, the impor-
tance of L. tulipifera in explaining both species
and community patterns in our data set points
towards the existence of this phenomenon.

The results from the MLM at the individual
species level were consistent with the results from
community analysis methods. Elevation was the
most important correlate of community composi-
tion using all four methods (Table 2) and was also
the environmental variable most frequently iden-
tified as most important for individual species
(Table 3). Soil calcium was the second- or third-
most important environmental variable across all
community analysis methods and the second-
most important at the species level; furthermore,
the effects of basal area of tulip poplarwere closely
associated with the effects of soil calcium. In the
community analyses the effects of elevation were
largely orthogonal to those of soil calcium/basal
area of tulip poplars (Fig. 2). Therefore, these
environmental variables are influential for ex-
plaining the distribution of individual species and

hence the composition of communities across the
environmental gradients we considered.

As essentially regression-based, our MLM
approach requires decisions typical of multiple
regression. Multivariate analyses often deal with
large numbers of environmental predictor vari-
ables, and therefore it is often useful to exclude
highly collinear variables or those that are known
to have similar biological effects, as we did in our
analyses of our forest herb data set. Similarly,
inclusion of quadratic or interaction terms should
be done in a biologically informed way so as not
to build a statistical model that contains more
coefficients than could sensibly be estimated
from a data set. Thus, we recommend caution
in applying our MLM approach to any data set,
and use of appropriate diagnostics (Gelman and
Hill 2007), rather than any blanket recommen-
dations regarding possible problems with collin-
earity and model over specification.

We have only compared four possible ap-
proaches to understanding variation in commu-
nity composition, and we recognize that other
approaches may have different strengths and
weaknesses. More advanced multivariate analy-
ses likely outperform RDA, CCA, and NMDS.
For example, co-inertia analyses such as outlying
mean index (OMI; Doledec et al. 2000, Thuiller et
al. 2004) have been shown to explain more
variance than CCA or RDA. Other recent
approaches such as random forest (Breiman
2001) or boosted regression trees (Elith et al.
2008) have been shown to provide better
prediction than logistic regression for assessing
individual species distributions. In particular,
REEMtree, a regression-tree based linear mixed-
effects model, is capable of building interactions
between variables and has no a priori expectation
for the response of species to environmental
gradients (Sela and Simonoff 2012). Here, how-
ever, we have restricted our comparison with
MLM to RDA, CCA and NMDS because they are
standard, commonly used approaches.

We believe that MLM provides a useful
alternative to commonly used methods for
analyses of community composition, while at
the same time giving species-level information to
disentangle the drivers of species distributions
and assemblages. Furthermore, MLM provides a
straightforward analysis that produces informa-
tion easily accessible to scientists, policy makers,
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and resource managers. For instance, the effects
of land-use history (e.g., logging and farming) on
forest understory communities are of long-
standing interest to ecologists (see Hermy and
Verheyen 2007 for review). MLM could be used
to disentangle the effects of such legacies on
individual species versus community composi-
tion. Indeed, Wyatt and Silman (2010) found that
individual abundance was greater in old growth
forests than mature secondary forests, and that
species composition differed significantly be-
tween the two. MLM would have the advantage
of combining such analyses into a single model.
The MLM approach also provides a flexible
framework that can be further modified to
perform different tasks. For example, it can be
used to model phylogenetic correlations of
relatedness among species (Ives and Helmus
2011), and it could be similarly modified to
incorporate other types of correlations, such as
spatial autocorrelation among sites. Finally,
MLM can easily be integrated into a multi-model
inference strategy, and model-averaged parame-
ter estimates and estimates of unconditional
sampling variances can be computed. Future
research might develop MLMs to explore the
community composition of other taxa across a
range of scales and landscapes, and to assess
changes in species assemblages as environmental
conditions change over time. Thus, MLMs offer a
powerful and efficient approach for understand-
ing community assemblages.
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SUPPLEMENTAL MATERIAL

APPENDIX

Study Area

This field data was collected in the French

Broad River Basin in Buncombe and Madison

Counties of western North Carolina (Fig. A1).

The study region lies within the Southern Blue

Ridge physiographic province, which is charac-

terized by steep terrain and mixed-mesophytic

deciduous forest (Braun 1950). This area receives

Fig. A1. Map of the study region. The enlarged area shows the two counties where the fieldwork was

conducted. Light gray shading indicates Pisgah National Forest. Dark gray shading indicates the 5 watersheds in

which the study plots (n ¼ 54) are located.
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on average 125 cm of precipitation per year.
Mean winter temperature is 48C and mean
summer temperature is 238C (Southeast Regional
Climate Center 2007). Elevation ranges from 350
to 1900 m. Overstory canopies are dominated by
Quercus velutina, Q. prinus, Q. alba, Oxydendron
arboreum, and Pinus strobus on upper slopes and
ridges, and by Liriodendron tulipifera, Acer saccha-
rum, A. rubrum, Fagus grandifolia, Q. rubra, Tilia
americana, and Betula lenta on more mesic sites
(McNab 1996). Soils consist of Ultisols on
gradual slopes and ridges, and Inseptisols on
steeper slopes and coves (Graham 1990). The
biological diversity of herbaceous communities is
particularly rich, especially in mesic cove forests
(Whittaker 1956, Glenn-Lewin 1977, Ford et al.
2000). The topographic variability that character-
izes the region creates strong gradients of
temperature and moisture (Bolstad et al. 1998)
that can be used as proxies for climate (Ibanez et
al. 2008, Trivedi et al. 2008).

Field Sampling
Prior to sampling, we identified 14 native

herbaceous species that represented a range of
habitat generalists and specialists, and were
common to the area (Table A1). Sampling took
place from May–August 2009. We selected sites
by generating random points across 5 watersheds
in ArcGIS and choosing a subset of 54 sites that
were accessible, not recently logged, and not
dominated by Eastern hemlock (Tsuga canaden-
sis), rhododendron (Rhododendron spp.), or
mountain laurel (Kalmia latifolia).

A 20 3 20 m plot was established at each site
containing 3 transects at 0 m, 10 m, and 20 m,
perpendicular to the slope. Using a modified

version of the Braun Blanquet (1932) scale, we
recorded percent cover for each focal species
within 1-m2 quadrats at 6 evenly spaced intervals
along each transect (18 quadrats per plot). The
entire plot was thoroughly searched and the
presence of any focal species not recorded in a
quadrat was noted and assigned to the lowest
cover class (0–0.1%).Within each quadrat, we also
measured percent total herb and shrub cover, and
litter depth (an average of 4measurements). Slope
and terrain shape were determined using a
clinometer. A terrain shape index (TSI) estimates
the concavity or convexity of the local landformby
averaging slope gradients from the plot center to
its edge in the 8 sub-cardinal directions (McNab
1993).ApositiveTSI indicates a concave landform,
whereas a negative TSI indicates a convex land-
form. We extracted elevation and distance to
stream for each plot using 30-m digital elevation
models (DEMs) in ArcGIS. Distance to stream
represents relative slope position and was ob-
tained by calculating flow accumulation and the
distance from plots to the nearest point of highest
accumulation, using a threshold of 100 pixels.
High values indicate positions upslope near ridges
and lowvalues indicate positions downslope close
to streams or coves.

Five soil cores (5 cm diameter, 15 cm depth)
were obtained from each plot, composited,
sieved (4 mm) and oven-dried. Soils were
analyzed for total N, organic matter, P, Kþ, Caþþ,
Mgþþ, and pH by the University of Wisconsin-
Madison Soil and Plant Analysis Laboratory
using standard methods. Soil texture was deter-
mined in the laboratory using the hydrometer
method (Gee and Bauder 1986).

Table A1. Focal native herbaceous species.

Species Common name Family Presence in plots (%)

Actaea racemosa Black cohosh Ranunculaceae 51.9
Arisaema triphyllum Jack in the pulpit Araceae 79.6
Caulophyllum thalictroides Blue cohosh Berberidaceae 46.3
Chimaphila maculatum Spotted wintergreen Ericaceae 38.9
Galium latifolium Purple bedstraw Rubiaceae 75.9
Geranium maculatum Wild geranium Geriniaceae 64.8
Lilium superbum Turk’s cap lily Lileaceae 42.6
Polygonatum biflorum Solomon’s seal Lileaceae 29.6
Prosartes lanuginosum Yellow mandarin Lileaceae 88.9
Sanguinaria canadensis Bloodroot Papaveraceae 61.1
Thalictrum diocium Early meadow rue Ranunculaceae 38.9
Trillium grandiflorum White trillium Lileaceae 50.0
Uvularia grandiflora Large-flowered bellwort Lileaceae 33.3
Viola rotundifolia Roundleaf violet Violaceae 25.9
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SUPPLEMENT

R script and input data file for creating multilevel models using the forest herb data set described in
the main text (Ecological Archives C003-010-S1).

Table A2. Description of the environmental variables used in this study, including observed range, mean, and 1

standard deviation (n ¼ 54 plots).

Category Variable Description Observed range Mean SD

Topographic Elevation Elevation a.s.l. (m) 683–1,558 1,086 210.4
Aspect Degrees converted to moisture index 1–16 7.8 3.9
Slope Slope gradient (%) 8–30 22.8 9.1
Terrain Local terrain shape index (convex , 0 , concave) �66–55 7.0 22.2
Distance to stream Measure of slope position relative to nearest stream (m) 0–340 108.3 87.2

Biotic TreeBA Relative basal area of trees .10 cm DBH (m2) 4,645–30,342 15,762 6,741
ACSA Relative basal area of Acer saccharum (m2) 0–0.49 0.08 0.14
LITU Relative basal area of Liriodendron tulipifera (m2) 0–0.79 0.22 0.25
QUPR Relative basal area of Quercus prinus (m2) 0–0.58 0.09 0.16
Shrub Average total shrub cover (0.5–3 m above ground) 1–40 16.4 8.5
Herb Average total herb cover (,0.5 m above ground) 7–79 35.0 17.5

Soils and litter Litter Average litter depth (cm) 0.7–3.5 1.9 0.5
Sand Amount of sand in soil (%) 35–64 0.5 0.1
pH Soil pH 4.2–6.1 5.0 0.4
OM Soil organic matter (%) 4.9–32.8 12.5 5.6
Ca Soil calcium (ppm) 28–1,332 399.9 323.8
Mg Soil magnesium (ppm) 18–287 92.5 50.5
P Soil phosphorous (ppm) 2–16 4.6 2.3
K Soil potassium (ppm) 35–155 91.0 26.9
N Soil total nitrogen (%) 0.1–1.13 0.4 0.2
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